首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1553篇
  免费   170篇
  国内免费   1篇
  2021年   16篇
  2020年   16篇
  2019年   19篇
  2018年   25篇
  2017年   15篇
  2016年   28篇
  2015年   47篇
  2014年   62篇
  2013年   60篇
  2012年   71篇
  2011年   83篇
  2010年   65篇
  2009年   41篇
  2008年   70篇
  2007年   48篇
  2006年   67篇
  2005年   60篇
  2004年   59篇
  2003年   47篇
  2002年   40篇
  2001年   44篇
  2000年   51篇
  1999年   44篇
  1998年   34篇
  1997年   21篇
  1996年   20篇
  1995年   14篇
  1994年   12篇
  1993年   18篇
  1992年   25篇
  1991年   27篇
  1990年   24篇
  1989年   22篇
  1988年   17篇
  1987年   26篇
  1986年   24篇
  1985年   30篇
  1984年   24篇
  1983年   26篇
  1982年   19篇
  1980年   11篇
  1978年   11篇
  1976年   11篇
  1975年   11篇
  1973年   14篇
  1972年   15篇
  1971年   14篇
  1970年   14篇
  1969年   14篇
  1968年   11篇
排序方式: 共有1724条查询结果,搜索用时 23 毫秒
81.
82.
Members of the family Trypanosomatidae infect many organisms, including animals, plants and humans. Plant-infecting trypanosomes are grouped under the single genus Phytomonas, failing to reflect the wide biological and pathological diversity of these protists. While some Phytomonas spp. multiply in the latex of plants, or in fruit or seeds without apparent pathogenicity, others colonize the phloem sap and afflict plants of substantial economic value, including the coffee tree, coconut and oil palms. Plant trypanosomes have not been studied extensively at the genome level, a major gap in understanding and controlling pathogenesis. We describe the genome sequences of two plant trypanosomatids, one pathogenic isolate from a Guianan coconut and one non-symptomatic isolate from Euphorbia collected in France. Although these parasites have extremely distinct pathogenic impacts, very few genes are unique to either, with the vast majority of genes shared by both isolates. Significantly, both Phytomonas spp. genomes consist essentially of single copy genes for the bulk of their metabolic enzymes, whereas other trypanosomatids e.g. Leishmania and Trypanosoma possess multiple paralogous genes or families. Indeed, comparison with other trypanosomatid genomes revealed a highly streamlined genome, encoding for a minimized metabolic system while conserving the major pathways, and with retention of a full complement of endomembrane organelles, but with no evidence for functional complexity. Identification of the metabolic genes of Phytomonas provides opportunities for establishing in vitro culturing of these fastidious parasites and new tools for the control of agricultural plant disease.  相似文献   
83.
An estimated 5.7 million or more bats died in North America between 2006 and 2012 due to infection with the fungus Pseudogymnoascus destructans (Pd) that causes white-nose syndrome (WNS) during hibernation. The behavioral and physiological changes associated with hibernation leave bats vulnerable to WNS, but the persistence of bats within the contaminated regions of North America suggests that survival might vary predictably among individuals or in relation to environmental conditions. To investigate variables influencing WNS mortality, we conducted a captive study of 147 little brown myotis (Myotis lucifugus) inoculated with 0, 500, 5 000, 50 000, or 500 000 Pd conidia and hibernated for five months at either 4 or 10°C. We found that female bats were significantly more likely to survive hibernation, as were bats hibernated at 4°C, and bats with greater body condition at the start of hibernation. Although all bats inoculated with Pd exhibited shorter torpor bouts compared to controls, a characteristic of WNS, only bats inoculated with 500 conidia had significantly lower survival odds compared to controls. These data show that host and environmental characteristics are significant predictors of WNS mortality, and that exposure to up to 500 conidia is sufficient to cause a fatal infection. These results also illustrate a need to quantify dynamics of Pd exposure in free-ranging bats, as dynamics of WNS produced in captive studies inoculating bats with several hundred thousand conidia may differ from those in the wild.  相似文献   
84.
85.
86.
87.
A yearly global fire history is a prerequisite for quantifying the contribution of previous fires to the past and present global carbon budget. Vegetation fires can have both direct (combustion) and long‐term indirect effects on the carbon cycle. Every fire influences the ecosystem carbon budget for many years, as a consequence of internal reorganization, decomposition of dead biomass, and regrowth. We used a two‐step process to estimate these effects. First we synthesized the available data available for the 1980s or 1990s to produce a global fire map. For regions with no data, we developed estimates based on vegetation type and history. Second, we then worked backwards to reconstruct the fire history. This reconstruction was based on published data when available. Where it was not, we extrapolated from land use practices, qualitative reports and local studies, such as tree ring analysis. The resulting product is intended as a first approximation for questions about consequences of historical changes in fire for the global carbon budget. We estimate that an average of 608 Mha yr?1 burned (not including agricultural fires) at the end of the 20th century. 86% of this occurred in tropical savannas. Fires in forests with higher carbon stocks consumed 70.7 Mha yr?1 at the beginning of the century, mostly in the boreal and temperate forests of the Northern Hemisphere. This decreased to 15.2 Mha yr?1 in the 1960s as a consequence of fire suppression policies and the development of efficient fire fighting equipment. Since then, fires in temperate and boreal forests have decreased to 11.2 Mha yr?1. At the same time, burned areas increased exponentially in tropical forests, reaching 54 Mha yr?1 in the 1990s, reflecting the use of fire in deforestation for expansion of agriculture. There is some evidence for an increase in area burned in temperate and boreal forests in the closing years of the 20th century.  相似文献   
88.
We report a class of interfering mutants of the human H-ras gene capable of inhibiting phenotypes arising from the expression of the activated RAS2 gene, RAS2val19, in the yeast Saccharomyces cerevisiae. All these mutants encode unprocessed H-ras proteins that remain in the cytoplasm. One of the mutants, H-rasarg186, was examined in detail. H-rasarg186 protein is a competitive inhibitor of RAS2val19 protein. It does not interfere with processing and membrane localization of RAS2val19, nor does it appear to compete with RAS protein for its proposed regulator, the CDC25 protein. By several criteria the RAS2val19 adenylate cyclase interaction is unaffected by H-rasarg186. We infer from our results that H-rasarg186 protein interferes with an alternative function of RAS2val19.  相似文献   
89.
90.
Growth and respiration in two mangrove species at a range of salinities   总被引:3,自引:0,他引:3  
Growth and dark respiration rates were measured in leaves and roots of seedlings of Avicennia marina (Forsk.) Vierh, (grey mangrove), and Aegiceras corniculatum (L.) Blanco (river mangrove). Plants were grown in a soil mixture at ambient temperatures and watered with 0.25 and 100% sea-water. Oxygen uptake was measured in excised root and leaf samples. In both species growth was maximal in 25% sea-water, and root respiration was lowest in 100% sea-water. Differences were found between the two species in the responses of leaf respiration to salinity. In A. corniculatum leaf respiration was raised in both 25 and 100% sea-water, while in A. marina only leaves in 100% sea-water showed higher rates of respiration. These results are consistent with the view that A. marina is the more salt-tolerant of the two species. In A. corniculatum the respiration rates of the hypocotyl were also measured, and were much higher in 100% sea-water than in the other two treatments. The results suggest that at high salinities there is a high metabolic cost in the shoots of both species, and that at such salinities rates of root respiration may be limited by the supply of substrate from the shoots.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号